Orbital exenteration (OE) was first described by Georg Bartisch in 1583. One must distinguish between enucleation, which involves globe resection only, and exenteration, in which the entire orbit including the globe, the eyelids, the retrobulbar soft tissues, and periosteum are potentially removed. Indications for OE include primary tumors of the eye, oral cavity, paranasal sinuses, skin, and brain. Careful consideration regarding the likelihood of local control and cure is needed before proceeding with this operation. Therefore, OE is usually reserved for the treatment of locally advanced sinonasal malignancy and aggressive orbital tumors with associated poor prognosis. Invasive diseases may require extended procedures, including maxillectomy and craniofacial resection. This results in communication of the orbit with the cranial cavity, nasal cavity, and paranasal sinuses which can necessitate reconstruction. It has been shown that a large number of patients undergoing OE have had previous treatments such as local excision, cryosurgery, curettage and electrodesiccation, Mohs’ excision, enucleation, and radiotherapy. The combination of inappropriate observation, neglect of the lesion by the patient, and tumor aggressiveness results in orbital tumors presenting at an advanced stage.

The main issues that need to be considered when performing an OE include addressing the dead space; isolating the orbit from the sinonasal space and brain; reconstruction of the orbital rim; the need for cancer surveillance; the impact of radiation therapy; and the possibility of prosthetic implantation. Extensive management of the orbit requires
multidisciplinary collaboration of head and neck surgeons, neurosurgeons, ophthalmologists, plastic surgeons, radiologists, and medical oncologists. In one study, indications for OE included primary tumors of the eye (35.71%), tumors of oral cavity or maxillary sinus (35.71%), skin (23.81%), and brain (4.77%). According to another source, the paranasal sinuses and/or nasal cavity are the sites of origin of the majority of tumors requiring exenteration.

Mucormycosis is well known as an opportunistic fungal infection that may require OE. The indication for exenteration rests on the clinical judgment of the multidisciplinary surgical treatment team.

Diagnostic Work-Up

All patients being considered for OE should be examined preoperatively by the head and neck surgeon or an ophthalmologist. A neurosurgical evaluation should be performed in cases of skull-base involvement. All patients for whom reconstruction is planned should be evaluated by a reconstructive plastic surgeon. Radiologic evaluation includes both a high-resolution contrast-enhanced computed tomographic (CT) scan and magnetic resonance imaging (MRI) enhanced with gadolinium. While the CT scan provides optimal imaging of bony structures, the MRI delineates orbital and intracranial involvement. Patients with malignant tumors are evaluated for metastatic disease with positron emission tomographic CT (PET-CT), which offers accurate staging. This can guide treatment and prevent unnecessary procedures in patients with distant metastases. In patients with known metastatic disease, the survival benefit should be heavily weighed against the morbidity of OE.

Operative Techniques

The procedure typically begins by applying either skin sutures or a large Allis clamp to the lid margins for traction of the orbital contents. A circumferential skin incision overlying the bony rim of the orbit is outlined. Cold knife incision is first carried through the skin followed by monopolar cautery down to the periorbita. Careful attention is made to preserve the supraorbital nerve to preserve sensation to the forehead. The periorbita separates easily temporally, above, and medially except for the firm attachment of the medial and lateral canthal ligaments and the trochlea, which is best severed with a No. 15 blade scalp. The thinness of the orbital roof should be realized so that one does not inadvertently penetrate the anterior cranial cavity. Great care must be taken in elevating the periorbita to prevent opening into the nasal cavity due to the thinness of the nasal orbital wall over the ethmoid air cells. The lacrimal sac is then removed and the anterior and posterior ethmoidal arteries are ligated and transected. In separating the periorbita along the rim or the orbital wall, the neoplasm may be encountered. The periorbita can be freed as far back as the apical stump and along the superior and inferior fissures. These can be clamped and coagulated with monopolar cautery. The apical stump can be cut with curved neurectomy scissors applied from the nasal side. The stump invariably needs additional clamping and coagulation to avoid bleeding. The ocular muscles, optic nerve, and ophthalmic vessels at the orbital apex are then transected. Involved bone is removed with a rongeur and bone wax can be used to control bleeding. At this point, the orbit is packed and one can proceed with their reconstructive technique of choice.

Orbital exenteration may be subtotal, total, or extended. The traditional OE procedure includes the removal of the globe, eyelids, conjunctiva, and entire orbital contents including the periorbita. “Superexenteration” or “extended exenteration” may include the bony orbital walls, adjacent paranasal sinus tissues, and/or intracranial tissue. Subtotal exenteration involves removal of the globe, conjunctiva, and extraocular muscles, without a subperiosteal dissection. Subtotal exenteration with preservation of orbital tissue volume, eyelids, or conjunctiva may facilitate the use of orbital and ocular prosthesis, resulting in faster healing, fewer complications, less dressing changes as well as improve esthetic and functional results. There is no conclusive evidence that the rate of local tumor recurrence or the risk of systemic metastasis is higher with subtotal exenteration procedures. However, the ability to detect local orbital recurrence by physical examination may be compromised by either the preservation of orbital tissues or by performing reconstruction. An eyelid-sparing exenteration technique has also been described, with a reduction in healing time and improved cosmetic results. If approximately 50% of the patient’s conjunctival surface can be saved, a mucous

Table 1 Orbital exenteration classification by stage and type

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
<th>Surgical technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal exenteration</td>
<td>I</td>
<td>Eyelids and palpebral and bulbar conjunctiva sparing</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Eyelids and palpebral conjunctiva sparing</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Eyelid skin and deeper muscle layer sparing</td>
</tr>
<tr>
<td>Total exenteration</td>
<td>IV</td>
<td>Eyelid resection</td>
</tr>
<tr>
<td>Radical exenteration</td>
<td>V</td>
<td>Resection of orbital cavity bones</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>Extension of adjacent structures</td>
</tr>
</tbody>
</table>

Source: Adapted from Frezzotti et al.

Note: Categorization of orbital exenteration based upon surgical technique.
membrane-free graft, either buccal mucosa, hard palate
mucosa, or nasal turbinate mucosa, can be used to recon-
struct the fornix.17

Orbital exenteration is primarily performed under general
anesthesia; however, the use of intravenous sedation with
local anesthetic has been reported for older patients with
comorbidities. These patients were primarily reconstructed
with split-thickness skin grafts.5,6

Frezzotti et al categorized exenteration into six different
types. Subtotal exenteration includes three different types:
type I—eyelids and palpebral and bulbar conjunctiva sparing;
type II—eyelids and palpebral conjunctiva sparing; and type
III—eyelid skin and deeper muscle layer sparing. Total exen-
teration is classified as type IV involving eyelid resection.
Radical exenteration includes two different types: type V
involves resection of orbit cavity bones and type VI involves
extension to adjacent structures (–Table 1).19

Conclusion
Orbital exenteration is a radical operation associated with
significant psychosocial disability and functional impair-
ment. The method of reconstruction after OE should be
tailored to the defect and the postoperative needs of the
patient. Appropriate postoperative follow-up and rehabilita-
tion should be arranged for the patient.

Financial Disclosure
None.

Conflicts of Interest
The authors have no conflicts of interest to disclose.

References
exenteration and reconstruction. J Craniomaxillofac Surg 2017;45
(04):467–473
2 López F, Suárez C, Carnero S, Martín C, Camporro D, Llorente JL.
Free flaps in orbital exenteration: a safe and effective method
for reconstruction. Eur Arch Otorhinolaryngol 2013;270(06):
1947–1952
3 Gaisford JC, Hanna DC. Orbital exenteration. Plast Reconstr Surg
1963;31:363–369
4 Pryor SG, Moore EJ, Kasperbauer JL. Orbital exenteration recon-
struction with rectus abdominis microvascular free flap. Laryn-
5 Savage RC. Orbital exenteration and reconstruction for massive
basal cell and squamous cell carcinoma of cutaneous origin. Ann
Plast Surg 1983;10(06):458–466
6 Rahman I, Cook AE, Leatherbarrow B. Orbital exenteration: a
1335–1340
7 Serrano NA, Treñitè GN, Yueh B, Farwell DG, Futran ND, Méndez E.
Risk factors associated with repair of orbital and lateral skull
defects. Arch Facial Plast Surg 2012;14(02):97–103
8 Weizman N, Horowitz G, Gil Z, Fliss DM. Surgical management of
tumors involving the orbit. JAMA Otolaryngol Head Neck Surg
2013;139(08):841–846
10 Hargrove RN, Wesley RE, Klippenstein KA, Fleming JC, Haik BG.
Indications for orbital exenteration in mucormycosis. Ophthal
11 Zuniga MG, Turner JH. Treatment outcomes in acute invasive
fungal rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg
2014;22(03):242–248
12 di Maria A, Balia L, Poletti AM, Colombo G, Romano M. Orbital
13 Kuo CH, Gao K, Clifford A, Shannon K, Clark J. Orbital exentera-
tions: an 18-year experience from a single head and neck unit.
14 Kennedy RE. Indications and surgical techniques for orbital exen-
15 Fagan J. Total maxillectomy, orbital exenteration. In: Open Access
Atlas of Otolaryngology, Head & Neck Operative Surgery. 2017:
1–19. Available at: http://www.entdev.uct.ac.za/guides/open-
access-atlas-of-otolaryngology-head-neck-operative-surgery/
16 Nemet AY, Martin P, Benger R, et al. Orbital exenteration: a 15-
year study of 38 cases. Ophthal Plast Reconstr Surg 2007;23(06):
468–472
17 Goldberg RA, Kim JW, Shorr N. Orbital exenteration: results of an
(03):229–236
18 Shields JA, Shields CL, Demirci H, Honavar SG, Singh AD. Experi-
ence with eyelid-sparing orbital exenteration: the 2000 Tullos O.
Coston Lecture. Ophthal Plast Reconstr Surg 2001;17(05):
355–361