Complications in Facial Esthetic Surgery

Arya Namin, MD1 Tom Shokri, MD2 Aurora Vincent, MD2 Masoud Saman, MD3 Yadranko Ducic, MD, FRCS(C), FACS2

1 Department of Otolaryngology – Head and Neck Surgery, University of Missouri, Columbia, Missouri
2 Otolaryngology and Facial Plastic Surgery Associates, Fort Worth, Texas
3 Saman Center for Facial Plastic Surgery, Plano, Texas

Abstract

Facial esthetic surgery continues to become increasingly popular both in the United States and globally. Facial esthetic procedures in particular account for a large proportion of procedures performed. This increase in popularity will inevitably result in the number of potential complications associated with these procedures. In this review, the authors describe common complications encountered with frequently performed cosmetic facial procedures and their associated management. This article is meant as a general overview and introduction to potential complications surgeons may encounter, interested readers are encouraged to further review comprehensive subspecialty literature for more detailed discussion.

Keywords
► cosmetic surgery
► complications
► facial plastic surgery
► esthetic surgery

Brow Lift

There are various brow lift techniques, including direct, mid-forehead, hairline, temporal, coronal, and endoscopic. The patient’s hairline and aging changes of the forehead and brow are typically the two guiding factors that lead to selection of technique. The common complications encountered in brow lifting include bleeding, anesthesia due to sensory nerve injury, paresis or paralysis due to temporal branch of facial nerve injury, scarring, alopecia, brow asymmetry, and over-/under-elevation of the brow. Each brow lifting technique has its own incidence of complications. In a systematic review of complications in brow lifting techniques, need for revisional surgery has been found to be highest in hairline (7.4%) and direct (2.4%) brow lift techniques. The incidence of asymmetry was highest in the temporal lift (1.5%) and direct lifts (0.9%). The rate of alopecia was highest in the coronal (2.2%) and temporal (1.5%) brow lifts. The most common complications encountered in endoscopic brow lifts were alopecia (2.8%) and numbness (2%). The incidence of nerve injury in endoscopic brow lift techniques was found to be 0.1% and was similarly low in the open brow lift techniques. This low incidence of temporal branch of facial nerve injury is due to the well-described anatomy of this branch of the facial nerve in the temporal region as it courses just deep to the temporoparietal fascia. So long as the dissection plane in the temporal region is immediately superficial to the superficial layer of the deep
temporal fascia, the temporal branch of the facial nerve can be reliably avoided. Temporary peri-incisional numbness should be expected; however, anesthesia of the forehead and scalp can be avoided with preserving the supraorbital and supratrochlear neurovascular bundles. The safety profile of the various brow lifting techniques are favorable.4,5

Upper Lid Blepharoplasty

An understanding of the form and function of the upper eyelid as well as the pathophysiology of various disease states that affect the upper eyelid will allow the cosmetic surgeon to design and execute an operative plan that addresses each individual patient’s anatomy. A history and physical exam will identify contributing factors to the patient’s cosmetic concerns. A history of dry eye and prior ocular surgery particularly LASIK surgery should be elicited. It is typically recommended to delay blepharoplasty for 6 months after LASIK surgery. Any contribution from brow ptosis should be carefully examined and discussed with the patient. The margin reflex distance 1 (MRD1), MRD2, fissure width, margin crease distance, and measurement of levator function should all be examined preoperatively.6 Identifying blepharoptosis prior to embarking on blepharoplasty is of the utmost importance, and this is typically characterized by an MRD1 of less than 4 to 4.5 mm and margin crease distance greater than 9 to 11 mm. According to Hering’s law, if a unilateral ptosis is identified, the visual input to the affected eye should be obstructed to identify a contralateral ptosis that may become unmasked after unilateral repair.7 Examining the volumetric characterization of the upper eyelid will also allow the cosmetic surgeon to tailor the approach to the patient’s individual anatomy.8 Careful preoperative assessment of patients prior to upper eyelid blepharoplasty will allow the surgeon to avoid complications such as residual upper lid skin, eyelid ptosis, and brow ptosis.9 Operative planning and precise preoperative marking can help avoid superior sulcus deformity, eyelid crease asymmetry, canthal webbing, and lagophthalmos. Canthal webbing can occur when the excision is taken too far medially past the medial canthus or extended inferiorly near the lid margin. Intraoperative complications such as globe penetration can be prevented by never directing a needle toward the globe, and if this complication is encountered immediate consultation with an ophthalmologist should be sought out.9 Postoperatively, an eye care regimen can help decrease the risks of chemosis and corneal edema, although these should be carefully monitored for.10 Lacrimal gland injury, canalicular injury, preseptal and postseptal cellulitis are all complications that must be considered.9,10 The risk of retrobulbar hematoma and vision loss is rare, but is estimated to occur in approximately 0.0052% of cases based on a survey study.11 If retrobulbar hematoma is encountered, immediate orbital decompression should be performed through lateral canthotomy and cantholysis. Despite the many possible complications of blepharoplasty, a comprehensive history and physical exam followed by precise operative planning and execution can lead to reproducible results.12

Lower Lid Blepharoplasty

Lower eyelid blepharoplasty has two primary techniques, a transcutaneous and a transconjunctival. The technique utilized is based on a combination of surgeon preference, patient anatomy, and additional procedures (midface lift, lower face and neck lift, and fat grafting) that will be completed in the same setting to best achieve a smooth transition between the lower eyelid and midface. Lower eyelid blepharoplasty is an inherently difficult esthetic surgery due to concomitant tarsoligamentous laxity that is commonly encountered in the aging face population. An attentive preoperative examination can help guide a surgeon to design an operative plan that minimizes the risk of lower lid malposition and ectropion postoperatively. The position of the lower lid, the canthal tilt, and presence of scleral show preoperatively should be identified. The degree of tarsoligamentous laxity can be assessed by the snapback test and lid distraction test. The degree of eye prominence should be assessed with a Hertel exophthalmometer and measured, and the presence of negative vector (most anterior component of the malar tissue is found posterior to the most anterior projection of the globe) should be identified.13 Patients with prominent eyes and negative vectors are particularly prone to lower lid malposition postoperatively, and therefore require thoughtful planning and execution of lateral canthal and midface procedures.13 Many authors would argue that routine support of the lower lid through a canthopexy procedure should be considered on a routine basis, and that patients with more severe tarsoligamentous laxity or preoperative scleral show or ectropion be considered for canthoplasty.16 The treatment of postblepharoplasty lower eyelid retraction and ectropion are challenging pathologies to address.17 While many would agree that transcutaneous blepharoplasty poses an increased risk of postblepharoplasty lower eyelid retraction and ectropion compared with transconjunctival approached, if appropriate pre-emptive measures are taken to support the tarsoligamentous sling the transcutaneous approach can be safe and reliable.13,14,17 Preoperative analysis of the lower eyelid midface junction, and execution of an operative plan with the goal of creating a smooth transition between these facial subunits is important in preventing volume depletion of the lower eyelid.16 Concomitant midface lift, lower face and neck lift, fat grafting, and fat transposition are all techniques that can be employed to minimize the risk of volume depletion in this facial subunit.16,18–20 Chemosis, an infiltrative edema of the conjunctiva can be seen after lower lid blepharoplasty.21 Despite the technical demands of lower eyelid blepharoplasty, reproducible outcomes can be achieved, although the longevity of these results are poorly understood in the literature.22

Facelift

Facelift as an operation has evolved significantly over the past 50 years due to our increased understanding of facial anatomy and the pathophysiology of aging.23–27 Most facial esthetic
surgeons would agree that our ability to manipulate the SMAS, augment volume, and contour sub-SMAS neck structures has improved esthetic outcomes.28–32 The quest to minimize complications in facelift surgery continues to this day. As in all cosmetic surgery, a critical history and physical examination is the first step in avoiding complications in face lift surgery. Medical history, surgical history, tobacco use, and patient goals should be discussed.33 A comprehensive esthetic facial analysis should be performed, and physical exam findings such as skin tone, skin thickness, rhytid characteristics, microgenia, and hyoid bone position should be noted.33 Sound surgical technique with release of retaining ligaments and leaving minimal to zero tension on the skin closure can help minimize complications such as hypertrophic scars, skin loss, hairline malposition, and changes in ear lobe position.33,34 The vector of skin redraping is important to consider so that late postoperative complications such as vertical sweep deformity can be avoided.35 Salivary fistula is a relatively rare complication, but can be encountered in face lifting surgery, particularly when ptotic submandibular glands are partially excised.29,36 Injury to the greater auricular nerve is the most common nerve injury, and injury to the marginal mandibular nerve is the most common motor nerve injury.33,34,37 Infections and deep vein thrombosis are both rare in face lift surgery, but are serious problems when encountered.37,38

The data are not clear on what techniques are associated with worse safety profiles, but it does appear that certain techniques are associated with particular complications.39,40 In a systematic review high lateral SMAS and composite techniques were found to have a 1.85 and 1.52 rate of temporary facial nerve injury, respectively, which was significantly greater than the 0.69% rate of temporary facial nerve injury in SMAS plication techniques.40 The rate of major hematoma was significantly higher in deep plane (1.22%) and SMASectomy (1.92%) compared with SMAS plication (0.73%).40 Minimizing the risk of hematoma formation has been a goal of facial cosmetic surgeons for decades.41–46 The use of fibrin glue in facelift surgery has been studied for decades, and a recent review found data to support that fibrin glue does decrease the risk of hematoma.43 The utilization of drains has similarly been studied for decades, and there is evidence to support drains decrease the risk of seroma formation.44 Many would contend that drains also minimize postoperative edema. More recently, the effect of tranexamic acid (both topically and systemically) on bleeding, bruising, drain output, and hematoma has been studied, and appears to have promising utility in facial cosmetic surgery.42,46 Postoperative hematoma following face lift surgery is such a serious concern, that more aggressive techniques such as the hemostatic net have been proposed.41

Lastly, a very rare but dramatic complication follow facelift is pyoderma gangrenosum, an idiopathic inflammatory disease beginning with painful skin nodules that progress to ulcerations frequently in areas of trauma or surgery.47

Rhinoplasty

Many surgeons have dedicated their careers to rhinoplasty. This is a complex operation, and each maneuver incorporated into a rhinoplasty operation has implications on form and function. Complications in rhinoplasty can be broken down into structural complications, soft tissue envelope complications, bleeding, infectious, and systemic medical complications.

Structural complications in rhinoplasty are many and include skull base injuries, septal perforations, nasal airway dysfunction, graft malposition, graft absorption, graft visibility, saddle nose deformity, and persistent or knew deformities that require revisional surgery. These structural complications may become apparent during the early postoperative period or years later, indicating the importance of long-term follow-up and critical analysis of results even years after the operation. Skin necrosis and unsightly scars are the primary concerns regarding the soft tissue envelope. Rib grafts may be indicated in revisional esthetic rhinoplasty surgery. Although low, the complications to consider in autologous rib grafts include warping (3.08%), resorption (0.22%), infection (0.56%), displacement (0.39%), hypertrophic chest scarring (5.45%), and revisional surgery (14.07%).48 The risk of pneumothorax needs to be considered; however, a review of 405 patients from 8 studies found a 0% incidence of pneumothorax.48 Various alloplastic grafts, such as silicone, Gore-Tex, and Medpor, have been utilized in rhinoplasty.49 The overall rate of complications in alloplastic materials has been found to be 8%.49 While the rate of complications seen in alloplastic materials used in rhinoplasty may seem reasonable, these complications can often times include disastrous soft tissue envelope compromise that make many surgeons trepidatious about incorporating alloplastic grafts into their rhinoplasty practice. A recent review has found the most common complications after aesthetic rhinoplasty to be hematoma (0.2%) and infection (0.2%) with an overall complication rate of 0.7%.50 It was also found that age ≥ 40 years increased the relative risk of complications, and that addition of other cosmetic surgeries concurrently with rhinoplasty increased the risk of pulmonary complications.50 Although rare, the rhinoplasty surgeon must be prepared to address epistaxis and septal hematoma postoperatively. Albeit rare, toxic shock syndrome has been reported after rhinoplasty in both patients with and without nasal packing.51,52 While perioperative antibiotic use during rhinoplasty is largely surgeon preference, review of the data available in the literature seems to support that perioperative antibiotic use does not improve outcomes.53,54

Volume Augmentation

As our understanding of facial aging has improved, the importance of volume restoration has been recognized.55 Volume augmentation in the head and neck region includes HA fillers, fat grafting, and implants. When considering complications of HA fillers and fat grafting the vascular anatomy of the head and neck must be considered. Complications such as blindness and stroke can be seen in volume augmentation procedures using HA fillers due to the collateral circulation between the external and internal carotid arteries.56 Vascular infarction of the soft tissues of the face can also be encountered. An understanding of this anatomy can help minimize these risks.56,57 Additional strategies to minimize risk in HA filler injections include slow injections, low pressure injections, movement of tip with
delivery of product, use a small syringe and needle or blunt tip cannulas, and always monitor the patient.⁵⁸ Certain areas of the face, such as the glabella, alar base, nose, and temple, are associated with risks of vascular complications.⁵⁸,⁵⁹ Esthetic providers that perform HA filler injections should keep a tool kit on hand for managing complications, should they arise.⁵⁸ Aside from vascular complications, allergic reactions, infection, inappropriate placement, and inflammatory and non-inflammatory nodules can be encountered.⁵⁸ Contour irregularities, overcorrection, undercorrection, and persistent edema are complications that can be seen after fat grafting. As seen in HA fillers, blindness and stroke can occur in fat grafting.¹³ Genioplasty is a common esthetic procedure, and complications such as unsightly scars, cellulitis, orocutanous fistulas, skin necrosis, metal nerve damage, chin ptosis, mentalis muscle dysfunction, tooth root disruption, mandibular bone resorption, and implant malposition can be encountered.⁶⁰

Conclusion

The facial esthetic surgeon must be prepared to manage a myriad of complications. Understanding the form and function of the head and neck, a thorough history and physical exam, comprehensive preoperative discussion regarding patient goals, thoughtful surgical planning, and meticulous execution can help minimize these complications.

Conflicts of Interest

None declared.

References

